If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+21r=0
a = 3; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·3·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*3}=\frac{-42}{6} =-7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*3}=\frac{0}{6} =0 $
| 4+7(x-120)=38 | | 8^2x+3=120 | | 2x+12÷5=10 | | -2a-5=-9-3a | | 20=3x2 | | 8x=500+3x | | 6-2+4x-1=-x-7x+12-3x+5 | | 4(x−5)=2 | | -3+5b=2b+12 | | (3a)(3a)=147 | | 15+5x=20x | | (4a)(4a)-147=(a)(a) | | 7=-2+w | | 8x(-3)=67 | | x+7+x+8+x+x–6=24 | | 9x-8+4x=7x+15 | | 3(x-1)-8=4(1+x)+5 | | 4(t-3)+4=(2t-6) | | 3(2x4)=4x+10 | | 6^(x+1)=7776 | | x/11=2.5 | | 2(x+3)(x+3)=18 | | 16−120(2x)=8−120(x) | | 5(x-15)^2=75 | | 20x^2=-9x+18 | | u-38=9 | | v-28=11 | | (3c)(3c)-5=25 | | =x2–9x–22. | | Y4-17y2=-16 | | 5x+10=−4x−17 | | 2=0.5x-5 |